Orthogonal Polynomials and Lie Superalgebras

نویسنده

  • ALEXANDER SERGEEV
چکیده

depending on indeterminates x1, . . . , xn. Dyson conjectured the explicit form of this constant term. His conjecture was soon related with the root system of sl(n), generalized to other root systems of simple Lie algebras and proved. The expressions obtained for the Dyson constant are called Macdonald’s identities, see [M]. Let us briefly recall the main results. Let g be a simple (finite dimensional) Lie algebra, R its root system, P the group of weights; A = C[P ] the group of formal exponents of the form e, where λ ∈ P ; let W be the Weyl group of g and

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

The Invariant Polynomials on Simple Lie Superalgebras

Chevalley’s theorem states that for any simple finite dimensional Lie algebra g: (1) the restriction homomorphism of the algebra of polynomials S(g∗) −→ S(h∗) onto the Cartan subalgebra h induces an isomorphism S(g∗)g ∼= S(h∗)W , where W is the Weyl group of g; (2) each g-invariant polynomial is a linear combination of the polynomials trρ(x)k , where ρ is a finite dimensional representation of ...

متن کامل

The Extended Freudenthal Magic Square and Jordan Algebras

The Lie superalgebras in the extended Freudenthal Magic Square in characteristic 3 are shown to be related to some known simple Lie superalgebras, specific to this characteristic, constructed in terms of orthogonal and symplectic triple systems, which are defined in terms of central simple degree three Jordan algebras.

متن کامل

Gröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras

We show that a set of monic polynomials in the free Lie superalgebra is a Gröbner-Shirshov basis for a Lie superalgebra if and only if it is a Gröbner-Shirshov basis for its universal enveloping algebra. We investigate the structure of GröbnerShirshov bases for Kac-Moody superalgebras and give explicit constructions of Gröbner-Shirshov bases for classical Lie superalgebras. Supported in part by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008